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The homogeneous plaquette Ising model in two and three dimensions is investigated by means of Monte
Carlo simulations. By introducing a suitable order parameter for the two-dimensional lattice, and the finite-size
scaling of the corresponding fourth-order cumulant, it is found that, consistent with the previous theoretical
indications, the model in two dimensions is disordered at finite temperature and exhibits a zero-temperature
phase transition characteristic of the one-dimensional Ising model with an essential �exponential� singularity of
the order-parameter susceptibility as opposed to a Curie-law �power-law� divergence. In three dimensions,
however, the model is believed to have a first-order phase transition at Tc�3.6 screened by strong metastability
leading to a so-called “glassy transition” at T�3.4 when subjected to slow cooling. By computing the con-
figurational entropy Sc�S�liquid�−S�crystal� in the supercooled temperature range via thermodynamic inte-
gration of the internal energy results, the Kauzmann temperature defined as that temperature where the ex-
trapolated configurational entropy Sc�T� vanishes, is estimated to be TK�3.18. By finding ways to estimate the
equilibration time of the supercooled liquid and the nucleation time of the stable crystal droplets, it is shown
that T�3.4 is indeed the limit of stability or the effective spinodal temperature Tsp, at which the two time-
scales associated with the quasiequilibration of the supercooled liquid, �eq, and the nucleation of the stable
crystal droplets, �nuc, cross one another, with the former rising above the latter such that the supercooled liquid
state becomes physically irrelevant below Tsp�3.4 and the impending entropy crisis at TK�3.18 ��Tsp� is
thus avoided. Hence, what is sometimes called “glassy temperature,” is really a kinetic spinodal temperature
that may be regarded as the remnant of the mean-field spinodal.
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I. INTRODUCTION

On cooling a liquid, it may either undergo a first order
crystallization transition at the melting point, or else the liq-
uid will become supercooled for temperatures below the
melting point, becoming more viscous with decreasing tem-
perature, and eventually falling out of equilibrium, thus,
forming a glass �1�. In fact, the liquid is said to have fallen
out of equilibrium at a glass transition temperature Tg, as a
result of the crossing of two time scales: one associated with
the structural changes that bring about the relaxation of the
liquid, and the other with the duration of the experiment
�observation time� that is set by the cooling rate. Clearly, the
laboratory glass transition is a kinetic phenomenon as the
glass formation temperature Tg depends on the cooling rate,
and is sometimes accompanied by a jump in the specific heat
due to the freezing of the kinetic degrees of freedom at Tg.
The slower the cooling, the larger is the region, for which the
liquid may be supercooled, and the lower is the glass transi-
tion temperature �2�. Although the crystal phase is the most
stable below the melting point, the supercooled liquid may
be regarded as a metastable equilibrium state.

From a theoretical point of view, however, a certain class
of mean field spin glass models with multispin interactions,
also known as the p-spin glasses, exhibit characteristic be-
havior in common with the structural glasses �3–6�. Despite
their success in reproducing some of the structural glass phe-
nomenology �7�, such models contain quenched-in disorder
at the level of the Hamiltonian, as a result of which they do
not present a crystalline ground state. In these models, the
frustration arises from the quenched-in disorder rather than
the inherent complex dynamics of the system. It is therefore

useful to have homogeneous lattice models that self-induce
disorder and behave in some respects like glasses �8–14�.
The homogeneous plaquette Ising model, also known as the
Lipowski model, is a special case of a more general class of
models for interacting surfaces first proposed in the context
of lattice field theories �15�. The ferromagnetic plaquette
Ising model �FPIM� is represented by the following homo-
geneous Hamiltonian, involving four-spin interactions on el-
ementary plaquettes of a hypercubic lattice,

H = − J �
�ijkl�

SiSjSkSl, �1�

where, Si= �1 are Ising spins. The model is characterized by
a large ground-state degeneracy �2dL for a hypercubic lat-
tice of linear size L in d dimensions, such that flipping all the
spins in any plane of the hypercubic lattice, and the many
conceivable permutations of the lattice-plane flips, leave the
Hamiltonian invariant. The ground state entropy density,
however, is zero in the thermodynamic limit. The static prop-
erties of the three-dimensional �3D� FPIM have been studied
in some detail in the context of the glass transition, as it is
known to exhibit a first order transition in equilibrium analo-
gous to crystal melting at Tc�3.6, and an extremely long-
lived metastable supercooled liquid state followed by a jump
in the specific heat at a lower temperature T�3.4 when sub-
jected to slow cooling �11�. Furthermore, from the dynamical
point of view, the model has many characteristic features in
common with the structural glasses: �i� the stretched expo-
nential relaxation of two-time autocorrelation functions, de-
scribed by f�t�=exp�−�t /����, with a temperature-dependent
parameter ��1, �ii� a relaxation time, �, that appears to
diverge at a finite temperature, and �iii� a low-temperature
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glassy aging regime �12�. However, there still remain funda-
mental questions as to the precise nature of the so-called
glassy transition at T�3.4, as pointed out in the following.

From another perspective, the glass transition in liquids is
often associated with an entropy crisis, first discovered by
Simon �16�, emphasized by Kauzmann �17�, and elaborated
by, among others, Adam, Gibbs, and Di Marzio �18�. Accord-
ing to this picture, a liquid when supercooled is approaching
a situation where the entropy of the metastable liquid may
become lower than that of the stable crystal, which is rather
unphysical as the amorphous liquid structure must be at a
higher entropy in comparison with the ordered equilibrium
crystal, and if this situation were to continue �on lowering
the temperature further� the entropy of the liquid becomes
negative at some finite temperature, thus, violating the third
law of thermodynamics. This scenario, referred to as the en-
tropy crisis, is found to be the primary mechanism behind
glass transition in mean field p-spin glass models �3–6�.
Hence, the Kauzmann temperature TK, where the extrapo-
lated excess entropy of the liquid over the equilibrium crystal
�also known as the configurational entropy �19�� appears to
vanish, is often regarded as a lower bound to the limit of
stability of a supercooled liquid, or the lowest temperature to
which a liquid can possibly be supercooled before a thermo-
dynamic glass transition intervenes �20�. Thus, the configu-
rational entropy can be an important clue to the behavior of
a glass forming system �21�—a quantity that has been so far
ignored in the literature of 3D FPIM. This is what we intend
to investigate in our Monte Carlo �MC� simulations of the
3D model. Furthermore, by finding ways to estimate the
equilibration time of the liquid and the nucleation time of the
stable crystal droplets, it is shown that what is sometimes
called the glassy temperature is indeed the kinetic spinodal
temperature Tsp �as suggested in �12,14�� at which the two
time-scales associated with the quasiequilibration of the su-
percooled liquid, �eq, and the nucleation of the stable crystal
droplets, �nuc, cross one another, with the former rising above
the latter such that the supercooled liquid state becomes
physically irrelevant below Tsp�3.40 and the impending en-
tropy crisis at TK�3.18 ��Tsp� is avoided. We also investi-
gate the model in two dimensions by introducing a suitable
order parameter, thus finding that �consistent with some of
the previous theoretical indications �22�� the model is disor-
dered but exhibits a zero-temperature phase transition char-
acteristic of the one-dimensional Ising model.

In the following, we shall adopt a set of natural units
where the coupling strength J, the Boltzmann constant kB,
and the lattice spacing a, are all taken as unity. The time is
measured in units of Monte Carlo step �MCS�, which corre-
sponds to one complete lattice update.

The rest of this paper is organized as follows. In Sec. II,
the thermodynamics of the two-dimensional �2D� FPIM is
studied by means of MC simulation. In Sec. III, the 3D
FPIM is considered, with its effective spinodal discussed in
Sec. IV. The paper is concluded with a summary in Sec. V.

II. THERMODYNAMICS IN TWO DIMENSIONS

The thermodynamics of the FPIM in two dimensions, is
sometimes assumed to be as trivial as that exhibited by a

paramagnetic ensemble of independent spins, characterized
by a Curie-law �power-law� divergence of the susceptibility
�10�. On the other hand, there are theoretical indications as to
the presence of a zero-temperature phase transition �22�,
characterized by essential �exponential� singularities of the
correlation length and the susceptibility at T=0. In this sec-
tion, we present an independent investigation of the thermo-
dynamic properties of the 2D FPIM by means of MC simu-
lation. The ferromagnetic plaquette Ising model in two
dimensions consists of a system of Ising spins located on the
vertices of a square lattice, and interacting through four-body
plaquette interactions, as in Eq. �1�. Here the usual magneti-
zation, defined as a sum over the Ising spins, is not a good
order parameter due to the layered structure of the ground
state, as pointed out in the introduction. However, a suitable
order parameter involving the product of two nearest-
neighbor spins on the same row of the square lattice, allows
for a clear demonstration by MC simulations of the thermo-
dynamic behavior exhibited by the 2D FPIM, which is found
to be precisely the same as the one-dimensional Ising model
with nearest neighbor interactions �23�, as also indicated by
some of the earlier theoretical results �22�.

To this end, we define the Ising-like variable �ij �SiSj
�=�1�, where Si and Sj are nearest neighbor spins on the
same row �or, alternatively, the same column� of the square
lattice. As it turns out, a suitable order parameter is defined
by summing over all such pairs,

m = 	� �ij
/N . �2�

In order to obtain the static properties of the 2D FPIM, we
have simulated square lattices of size N=L2 with helical
boundary conditions for three different linear sizes L=5, 10,
and 40 using the standard metropolis Monte Carlo �24�. In
our simulations of the bulk properties, the helical boundary
conditions are employed to reduce the edge effects. At low
temperatures, the system was allowed up to 105 Monte Carlo
steps for equilibration, and the data points were then accu-
mulated by averaging over up to 106 accumulation MCS.
The accumulation stage was divided into 10 bins, and the
binned averages were used to estimate the statistical errors.
The results for the usual thermodynamic properties, the order
parameter m defined by Eq. �2�, the corresponding suscepti-
bility

� = N�	m2
 − 	m
2�/T , �3�

the internal energy per spin

E = 	H
/N , �4�

and the specific heat

C = �	H2
 − 	H
2�/NT2, �5�

for a system of linear size L=40 are reported in Figs. 1 and
2, together with the corresponding thermodynamic functions
of the one-dimensional Ising model shown as solid curves:
m=0 �T�0�, �=exp�2 /T� /T, E=−tanh�1 /T�, and C
=sech2�1 /T� /T2. The susceptibility and the specific heat, are
obtained from the fluctuations of the order parameter and the
internal energy, respectively. Evidently, there is good agree-
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ment except at the lowest temperatures where some discrep-
ancy is expected as a result of the extremely large equilibra-
tion times, and the glassy single-spin-flip dynamics the 2D
FPIM is known to exhibit at low temperatures �25�. In order
to ascertain the low-temperature behavior of the 2D FPIM,
particularly in the thermodynamic limit of the infinite lattice
size, we have calculated the fourth-order cumulant

UL�T� = 1 −
	m4


3	m2
2 , �6�

for three different system sizes as shown in Fig. 3. In fact
one may anticipate three different scenarios of a continuous
phase transition �26�: �i� a finite temperature phase transition
to an ordered phase at a critical temperature Tc, �ii� a finite
critical temperature followed by a line of critical points at
lower temperatures, the prime example of which is the
Berezenskii-Kosterlitz-Thouless phase transition, �iii� a zero
temperature phase transition such that the susceptibility and
the correlation length diverge exponentially as T→0, as in
the one-dimensional Ising model. Indeed one may employ
the fourth-order cumulant UL�T�, due to Binder �27�, in order
to distinguish between the different scenarios �26�. In case
�i�, the UL�T� curves as a function of the temperature inter-
sect at Tc, independent of the lattice size L, and splay out at
lower temperatures with the larger L’s having the larger
�lower� values below �above� Tc such that in the thermody-

namic limit of L→	 the cumulant tends to a step function
with a jump discontinuity of two-thirds at Tc. In case �ii�, the
UL�T� curves as a function of the temperature come together
at Tc and stay together at lower temperatures, consistent with
a line of critical points. In case �iii�, however, the curves
merge to a common value of two-thirds as soon as the tem-
perature is such that the correlation length 
�L, but the data
for increasingly larger system sizes merge to this common
value at progressively lower temperatures. From Fig. 3, it is
evident that the latter is the most relevant as far as the 2D
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FIG. 1. The MC results for the order parameter m, defined by
Eq. �2�, and the corresponding susceptibility � for a 2D FPIM lat-
tice of linear size L=40, are plotted as a function of the tempera-
ture. The susceptibility is obtained from the order parameter fluc-
tuations. The curves are the corresponding thermodynamic
functions of the 1D Ising model.
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FIG. 2. The internal energy per spin E, and the specific heat C
for a 2D FPIM system of linear size L=40 are plotted as a function
of the temperature. The specific heat is obtained from the energy
fluctuations. The curves are the corresponding thermodynamic
functions of the 1D Ising model.
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FIG. 3. Plot of the fourth-order cumulant vs temperature for
various system sizes of the 2D FPIM. Clearly, the curves are con-
sistent with the case where there is a zero temperature phase tran-
sition in the thermodynamic limit of infinite lattice size.
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FPIM is concerned. In this case UL�T� is a step function in
the limit L→	 with its discontinuity at T=0. Despite the
simple thermodynamics, interestingly, the 2D FPIM is
known to exhibit nontrivial glassy single-spin-flip dynamics
characterized by superArrhenius relaxation times, and a
glassy aging regime at low temperatures �25�.

III. GLASSY TRANSITION IN THREE DIMENSIONS

The static and dynamic properties of the 3D FPIM have
been studied in some detail as pointed out in the introduc-
tion. However, there still remain fundamental questions as to
the precise nature of the so-called glassy temperature, and
concerns about an impending entropy crisis that need to be
addressed. We perform MC simulations to compute the ther-
modynamic properties of the model. It should be noted that
magnetization is not a good order parameter due to the
lamellar configurations of the ground state, and the order
parameter introduced for the model in two dimensions can-
not be generalized. Therefore, much of the investigation will
focus on thermodynamic properties as the internal energy,
the specific heat, the free energy, and the all important con-
figurational entropy that has been so far ignored in the rel-
evant literature.

We have simulated simple cubic lattices of linear size L
=50, and 80 with periodic boundary conditions and sequen-
tial spin-flip sweeps through the lattice. The sequential spin-
flip sweeps �as opposed to random spin flip�, enables us to
simulate larger systems than reported before. This is crucial
as the critical droplet radius for homogeneous crystal nucle-
ation is estimated to be 25 lattice spacings just below the
melting temperature �12�. Hence, the simulated systems must
be large enough to accommodate stable droplets of the
ground state. Our results correspond to cooling experiments
of the liquid �or heating of the crystal�, with linear protocol
T=Tinit−rt, where r= �dT /dt� is the cooling rate and Tinit is
the initial temperature corresponding to either the high tem-
perature liquid phase, or the low temperature crystal. In order
to check the accuracy of our data, we compared our prelimi-
nary results with the extensive literature available on the sub-
ject �11�.

The energies of the crystal, the liquid, the supercooled
liquid, and the so-called glassy state of the 3D FPIM are
shown in Fig. 4 as a function of the temperature, for the
largest system size simulated L=80, and the lowest rate r
=2.0�10−7. The lines through the data points are fit func-
tions for the metastable supercooled liquid �LQ�, and the
equilibrium crystal �CR�,

ELQ�T� = − a tanh�b/�T − T��d� , �7�

where the best fit parameters are found to be a=−13.9, b
=0.07, T�=3.13, and d=0.34; and

ECR = EGS + cTn, �8�

with c=2.63�10−7 and n=9.63 as best fit parameters, and
EGS=−3.0 is the ground state energy. Similar fits have been
employed before in the context of the glassy behavior exhib-
ited by a homogeneous lattice model with multispin interac-
tions known as the homogeneous coupled two-level systems
�14�.

Similarly, the specific heats of the crystal, the liquid, the
supercooled liquid, and the so-called glassy state of the 3D
FPIM are shown in Fig. 5. Evidently, there is a significant
jump in the specific heat of the liquid at the so-called glassy
temperature T�3.40, thus, characterizing the liquid as frag-
ile. This fragility is consistent with the dynamics of the
model studied in �12�, where a detailed study of the energy
autocorrelation function in the supercooled temperature
range, reveals that the relaxation time of the liquid can be
well fit by a power-law divergence, thus making it appear
fragile in an Angell’s plot �28�.

In order to find the free energies, and, subsequently, the
entropies of the liquid and crystal phases, we make use of the
thermodynamic integration formula,

�F��� = �0F��0� + �
�0

�

d��E���� , �9�

where, �=1 /T is the reciprocal temperature, �0=0 for the
liquid phase, and �0=	 for the crystal �14�. On substituting
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FIG. 4. The internal energies per spin of the liquid, the super-
cooled liquid, the glassy, and the crystal phase of a 3D FPIM sys-
tem of linear size L=80 as a function of the temperature. The solid
line is an extrapolation of the quasiequilibrium liquid energy, as per
Eq. �7�, and the broken line is a fit through the equilibrium crystal
energy as of Eq. �8�.
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FIG. 5. The specific heats of the liquid, the supercooled liquid,
the glassy, and the crystal phase of a 3D FPIM lattice of linear size
L=80, plotted as a function of the temperature. The liquid appears
fragile as there is a significant jump in the specific heat.
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ECR from Eq. �8� in the thermodynamic integration formula,
Eq. �9�, the free-energy density of the crystal as a function of
the temperature is obtained,

FCR�T� = EGS −
c

n − 1
Tn. �10�

A direct substitution of ELQ from Eq. �7� into Eq. �9�, how-
ever, does not produce the desired free energy of the liquid,
as Eq. �7� is merely an approximation meant to extrapolate
the quasiequilibrium supercooled liquid energy to lower tem-
peratures: the approximation breaks down at high tempera-
tures. The thermodynamic integral for the liquid is thus ac-
cumulated in three stages: �i� For high temperatures �0�
0.1�, the linear approximation E�−3.2� is used to find the
integrated area under the E��� curve. This approximation is
validated by the high temperature expansion studies �29�. �ii�
In the intermediate temperature range �0.1�2.5�, the
Monte Carlo results for E��� are integrated numerically us-
ing the Simpson’s rule. �iii� At low temperatures ���2.5�,
Eq. �7� is used to represent the energy of the liquid, and to
extrapolate the equilibrium liquid energy down to lower tem-
peratures. Indeed, a calculation of the free-energy densities
of the liquid and crystal phases on these lines, allows for an
independent determination of the melting point Tc by requir-
ing FLQ�Tc�=FCR�Tc�. The result is identical with that al-
ready reported in �11�, namely, Tc�3.60. Once the free en-
ergies are known as a function of the temperature, one can
simply find the entropies through the thermodynamic rela-
tion, S�T�= �E�T�−F�T�� /T. Finally, the Kauzmann tempera-
ture can be estimated by equating the �extrapolate� liquid and
the crystal entropy densities, SLQ�TK�=SCR�TK�. The result is

TK � 3.18. �11�

The configurational entropy Sc�SLQ−SCR, is another impor-
tant quantity for the thermodynamic and the structural char-
acterization of the supercooled liquids as pointed out in the
introduction. It is also believed to be intimately related to the
dynamics of the liquid, most notably, through the Adam-
Gibbs relation for the structural relaxation time �18�. The
configurational entropy of the liquid for the 3D FPIM is
shown in Fig. 6. Sc�Tc� is the entropy of fusion. Evidently,
the configurational entropy at T=3.40, is a substantial frac-
tion of the entropy of fusion, and the extrapolated configu-
rational entropy appears to vanish at the Kauzmann tempera-
ture TK�3.18.

Fig. 7 shows our results for the cooling experiments of
different rates on a lattice of linear size L=50 with periodic
boundary conditions. The solid line is the extrapolated equi-
librium liquid energy, as per Eq. �7�. Evidently, by reducing
the cooling rate, the system enters states of lower energy.
Furthermore, the observation that for temperatures below T
=3.40 the curves of cooling rates r�10−3 stay above the
equilibrium liquid energy, and those with r2.0�10−4 fall
below the equilibrium energy, is indicative of the fact that
the equilibration time �eq of the supercooled liquid at T
=3.40 must be between r�

−1=103 MCS and r�
−1=5�103

MCS, or 103��eq�5�103 at T=3.40. As it turns out, this is

of the same order of magnitude as the nucleation time, �nuc,
of the stable crystal droplets at T=3.40, as discussed in the
next section.

IV. DISCUSSION

The dynamic properties of the 3D FPIM have been inves-
tigated in �12�. A detailed study of the two-time energy au-
tocorrelation function in the supercooled temperature range
together with attempted fits to the stretched exponential
functions of the form A�t�=A0 exp�−�t /����, reveals that the
relaxation time ��T� increases sharply as the temperature is
reduced, and can fit accurately a power-law divergence
��T�=2.23 / �T−3.39� �12�. The equilibration time �eq�T�, de-
fined as that time-scale over which the memory function A�t�
becomes negligibly small, is proportional to � and of the
order �eq�20�. Thus, an independent estimate for the equili-
bration time at T=3.40 is obtained such that �eq�20�
�4400 MCS. Indeed, this is of the same order as our esti-
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FIG. 6. The configurational entropy densities of liquid and su-
percooled liquid states of a 3D FPIM system of linear size L=80, as
a function of the temperature. The point at which the extrapolated
configurational entropy appears to vanish, TK�3.18, is known as
the Kauzmann temperature.
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FIG. 7. The energy results in cooling experiments of different
rates for a 3D FPIM system of linear size L=50, are shown as a
function of the temperature. The solid line is the extrapolated qua-
siequilibrium liquid energy. Evidently, by reducing the cooling rate
the system enters states of lower energy.
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mate for �eq at T=3.40, based on the cooling experiments
shown in Fig. 7 and presented in Sec. III.

Furthermore, an estimate for the crystal nucleation time
�nuc at a reference temperature Tref=3.50 �i.e., midway inside
the supercooled temperature range�, is given in �12� based on
the standard nucleation theory. This was meant to explain the
strong metastability displayed by the 3D FPIM as the nucle-
ation time at Tref is found to be extremely high: �nuc�Tref�
�1025 MCS. Indeed, the standard nucleation theory in di-
mensions d=3, predicts that the activated crystal nucleation
time must vary with the temperature as

�nuc�T� = �0 exp 4A3�3�T�
27B2�F2�T�T� �12�

where, ��T� is the surface tension between the stable and the
metastable phases, �F�T� is the difference in the bulk free-
energy densities, and �0 is a high-T microscopic time-scale
�30�. A and B are constants characterizing the geometrical
shape of the droplets �for spherical droplets A=4�, and B
=4� /3�. Thus, in order to estimate �nuc at T=3.40 from its
known value, �nuc�Tref��1025 MCS, one needs to know the
temperature dependence of the free-energy difference �F�T�,
and that of the surface tension ��T�. The free energy differ-
ence can simply be obtained from the free energy data,
where close to the melting point it can be well approximated
by �F�T��0.5�Tc−T�. As for the surface tension, it is some-
times assumed to depend weakly on the temperature and
taken to be a constant. However, in a supercooled glass-
forming liquid, there are certain mechanisms that tend to
“renormalize” the surface tension from its assumed con-
stancy �31�. Thus, the surface tension separating a glassy
cluster of linear size 
 from the liquid background, is be-
lieved to be renormalized due to the exponentially large
number of the glassy phases �that may nucleate inside one
another�, and to scale with the typical cluster size as �
�
−�d−2�/2, where the linear cluster size has a temperature
dependence 
��T−TK�−� with an exponent ��2 /d �31�.
There are good reasons to believe that a more precise value
of � must be unity �32�, rather than the lower bound �
=2 /d predicted by the mean field theory �31�. This is based
on the reasoning that mean field theories tend to underesti-
mate the correlation length exponents, and that �=2 /d pre-
dicts glassy clusters that are significantly smaller than those
actually observed in experiments near Tg �33�. Thus, with
�=1 �32�, the surface tension is found to vary with the tem-
perature as

��T� � �T − TK�d−2/2. �13�

Hence, in estimating the crystal nucleation time of 3D FPIM
at T=3.40 from that at a reference temperature Tref=3.50,
one must not only take the temperature variation of the free
energy difference �F�T�=0.5�Tc−T� into account, but also
that of the renormalized surface tension ��T���T−TK�1/2, in
d=3 dimensions. In going from the reference temperature
Tref=3.50 to the so-called glassy temperature T=3.40, the
free energy difference is doubled, �F�T� /�F�Tref�=2, while
the surface tension is reduced by about %17, ��T� /��Tref�
=0.83. As the exponent in Eq. �12�, depends on the second

power of �F, and the third power of �, the nucleation time at
T=3.40 is reduced drastically from its value at Tref. In fact,
we find �nuc�4600 MCS at T=3.40, which is indeed com-
parable to our estimate for �eq�4400 MCS at the same tem-
perature,

�eq�T = 3.40� � �nuc�T = 3.40� . �14�

The effective spinodal temperature Tsp, by definition, is that
temperature at which �eq�Tsp�=�nuc�Tsp�. Thus, the super-
cooled liquid state in 3D FPIM reaches its limit of stability at
a temperature that must be more precisely called an effective/
kinetic spinodal temperature Tsp, rather than a glassy tem-
perature Tg, as by definition Tg is a cooling rate dependent
temperature and the anomaly at T=3.40 clearly does not
qualify. Tsp as defined above is of course independent of the
cooling rate. As �eq rises above �nuc below Tsp, the super-
cooled liquid can no longer equilibrate, and the system is
dominated by fast nucleation of tiny droplets of the many
crystalline ground states. This also is the reason why in Fig.
4 the supercooled liquid energy suddenly drops to a value
close to that of the equilibrium crystal at Tsp=3.40. Evi-
dently, the supercooled phase of the 3D FPIM loses stability
at Tsp, as a result of which the impending entropy crisis at TK
��Tsp� is avoided. Below Tsp, however, the system is be-
lieved to enter an off-equilibrium dynamics regime, akin to
glassy aging �12�, where fast crystal nucleation is followed
by extremely slow activated growth of the many mismatched
droplets of the competing crystalline ground states �14�. In
such a situation, a mixture of many mismatched tiny crystal-
lites becomes kinetically indistinguishable from a truly dis-
ordered glass. This limit of stability, however, may prove
impossible to observe in laboratory experiments if the equili-
bration time at Tsp is larger than the observation time such
that the glass transition temperature exceeds the effective
spinodal temperature �14�, a situation similar to that depicted
by the curves of cooling rate r�10−3 in Fig. 7.

V. SUMMARY

The ferromagnetic plaquette Ising model in two and three
dimensions is investigated by means of MC simulations. By
introducing a suitable order parameter in two dimensions, it
is indeed shown that the 2D FPIM exhibits a zero-
temperature phase transition characterized by exponentially
diverging susceptibility and correlation length.

The nature of the so-called glassy transition in 3D FPIM
is clarified: it is indeed the case that what is sometimes called
glassy temperature, is really a kinetic spinodal temperature
independent of the cooling rate that may be viewed as the
remnant of the mean-field spinodal as suggested in �12,14�.
By extrapolating the configurational entropy of the liquid,
the Kauzmann temperature is estimated to be TK�3.18. Fur-
thermore, by finding ways to estimate the equilibration time
of the supercooled liquid �eq, and the nucleation time of the
stable crystal droplets �nuc at T=3.40, it is argued that T
=3.40 must be more precisely interpreted as an effective
spinodal temperature, Tsp, at which the two time-scales asso-
ciated with the quasiequilibration of the supercooled liquid,
and the nucleation of the stable crystal droplets, cross one
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another, with the former rising above the latter such that the
supercooled liquid state becomes physically irrelevant below
Tsp=3.40 and the impending entropy crisis at TK=3.18
��Tsp� is avoided.

Based on scaling arguments �31�, and certain phenomeno-
logical considerations �32�, a temperature dependence for the
surface tension separating a glassy cluster from the liquid

background, Eq. �13�, is obtained for the supercooled glass-
forming liquids that appears to work well for fragile liquids
in three dimensions, such as the 3D FPIM, as well as those in
two dimensions, in particular, the 2D coupled two-level sys-
tems for which Eq. �13� predicts a constant surface tension,
which is assumed and shown to work in �14�.
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